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Abstract

Case-based reasoning relies heavily on the availability of a highly competent case base to make high-quality decisions. However,
good case bases are difficult to come by. In this paper, we present a novel algorithm for automatically mining a high-quality case
base from a raw case set that can preserve and sometimes even improve the competence of case-based reasoning. In this paper, we
analyze two major problems in previous case-mining algorithms. The first problem is caused by noisy cases such that the nearest
neighbor cases of a problem may not provide correct solutions. The second problem is caused by uneven case distribution, such
that similar problems may have dissimilar solutions. To solve these problems, we develop a theoretical framework for the error
bound in case-based reasoning, and propose a novel case-base mining algorithm guided by the theoretical results that returns a
high-quality case base from raw data efficiently. We support our theory and algorithm with extensive empirical evaluation using
different benchmark data sets.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Case-based reasoning (CBR) is a problem solving strategy that uses previous cases to solve new problems [23,24,
46]. Over the years, CBR has enjoyed tremendous success in solving problems related to knowledge reuse. A major
open issue in CBR is how to automatically mine a quality case base from a raw case set. A quality case base must have
high “competence” in the sense that most future problems can be matched to some cases in the case base that have a
solution that can be adapted to solve the problem [40]. In addition, the mined case bases must be compact; they should
not contain too much redundant case knowledge in order to ensure the efficiency of case-similarity computation.
However, traditionally, case bases are either assumed to be in existence already, or mined manually by human experts.
It remains a critical task how to automatically mine quality case bases from the raw case sets.

We refer to the process of automatically mining a compact and high-quality case base from a raw case set as
case-base mining. We observe that case-base mining is a different problem from case-base maintenance tasks in that
case-base mining takes input from a raw case set whereas case-base maintenance takes input from an existing case
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base to improve its performance. These two problems are also related; as we see in the related work section where
there are many case-base editing algorithms that can be applied for case-base mining, although these algorithms may
not produce results with the best quality and efficiency.

In case-base mining, a natural approach would be to directly extend the case-base maintenance works by Smyth
and Keane [40] and by Yang and Zhu [52,54] in order to find a quality case base from a raw case set. However, in
doing so, we notice several difficulties:

(1) Case-base mining should be a global optimization problem. As such, there is a need for providing theoretical
guidance as to what kind of cases to extract and how many cases to extract in order to obtain the best performance.
While the case-categorization provided in [40] addresses one aspect (i.e., case coverage) of this problem, the
general issue of what and how many cases to select still remain open. It is our aim to provide a precise error
bound to compare the case-base mining algorithms with the quality of the resultant case bases.

(2) In a typical real-world case set such as a Web browsing log file, the cases can be stochastic in nature or may
contain mistakes. Stochastic cases are those that deviate from a certain mean according to some laws of nature,
whereas the mistakes in cases occur when the problems or solutions are described with some kind of inherent
error. In this paper, we refer to both types of cases as noisy cases. Thus a key problem is to recognize and handle
the noisy cases. In this paper we provide a general framework for case-feature selection and case mining in order
to remove the noisy features and cases. We observe that in the past, other solutions to handling noise have been
attempted. For example, some CBR systems allow k > 1 in k-NN search to improve their robustness.

(3) The previous works on case-base maintenance paid little attention to the distribution of future problems to be
solved. Some previous works are coverage-based algorithms in that the categorization of useful cases often corre-
spond to outlier or rare cases. In addition, we observe that in many data sets, most of the cases have approximately
the same coverage. Thus, the coverage-based case-base mining algorithms may sometimes not provide a good ba-
sis for selecting cases into the final case base.

In this paper, we present a case-base mining framework that includes an error-bound theorem that serves as the
theoretical foundation, and a case-base mining algorithm. This framework is aimed at solving the three challenges
listed above. We first present a theoretical result that shows (a) the cases that are selected for a high-quality case base
must be accurate, highly representative and diverse in future-problem distribution; (b) there is an optimal number of
such cases for each problem domain and the size of an optimal case base is bounded. We then present our algorithm
called Kernel-based Greedy Case-base Mining (KGCM), which extends our earlier solutions in [31] to solve the above
problems. In the KGCM algorithm, we first map the problem set from the original problem space to a feature space,
where the features can be obtained through a kernel transformation. Then we present a Fisher Discriminant Analysis
(FDA) based feature-extraction method to help remove noise and extract the highly predictive features. Finally, in
the KGCM algorithm, we take into account the “diversity” of the selected cases in terms of the coverage of future
problems, which is a direct result of our theoretical framework. We have done extensive experiments to verify our
theory and algorithm. Our experiments confirm that the KGCM algorithm outperforms many of the previous coverage-
based algorithms in building high-quality case bases while preserving and sometimes enhancing the competence of
the case bases.

The rest of the paper is organized as follows. The next section discusses related works. Section 3 builds a theoretical
model for case-base mining. Section 4 presents the KGCM algorithm. Section 5 presents the experimental results for
the evaluation of KGCM. Section 6 concludes with a discussion of future work.

2. Related work on case-base mining

In this paper, a case set refers to a set of initial input cases that are collected in practice. We define a case as a
problem-solution pair. That is, each case c in a case set is a pair c = (�x, s), where s ∈ S is a solution corresponding
to a problem feature vector �x, and S is a set of solutions. Given a training case set T containing a set of problem-
solution pairs: T = {(�xi, si), i = 1,2, . . . ,N} , our objective is to select a subset, which is called a case base, CB =
{(�xij , sij ), j = 1,2, . . . ,M} of the training case set, such that the competence of similarity-based problem solving
based on CB is sufficiently high for future problems. We formally define competence in Section 5, but here we can
understand this concept as a measure of the collective problem solving effectiveness of a case base. This problem is
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
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Table 1
Notations used in the paper

Notation Meaning
T Raw case set
CB Case base
T A general case set, which can refer to T or CB
X Problem set
X Transformed problem set
S Solution set
�x Problem feature vector
c A case, c = (�x, s)

�s Solution vector of �x
N Size of T

M Size of the CB
l Size of the solution set
d Dimension of problem feature vector �x
E�x,�s[·] Expectation over �x and �s with respect to their probabilities
CRS Candidate Reachability Set of a Problem
CCS Candidate Coverage Set of a Case
Coverage See Definition 1
Reachability See Definition 2
GroupCoverage See Definition 4
RelativeCoverage See Definition 3

referred to as case-base mining. The major concepts that we use in this paper are listed in Table 1. We also put a more
complete notation list in Appendix B.

Generally speaking, case-base maintenance aims at updating an existing case base (CB) in order to maintain prob-
lem solving competence. In case-base mining, the input is not an existing case base, but a raw case set T , where T can
be much larger and noisier. Furthermore, case-base mining stresses scalability in that algorithms for case-base mining
must be applicable to large case sets. Other researchers used such terms as case editing when they refer to the process
of updating a given case base through adding, deleting and combining cases.

There are several different ways of categorizing existing case-base mining algorithms. We classify these algorithms
in three dimensions: search direction, order sensitivity, and evaluation criteria (see, for example, [48,49]):

Search Direction There are two search directions: incremental search and decremental search. The incremental search
process begins with an empty subset CB and incrementally adds instances from T to CB where CB is the
mined case base, as long as the new cases satisfy some predefined optimality criteria.

The decremental approach begins a search for a case base with a mined case base CB = T . It then finds
case instances to remove from the CB. The advantage of this approach is that at all times, it has a global view
of the remaining case base.

Order Sensitivity Associated with both of the above search directions, another dimension in categorization is to clas-
sify case-base mining algorithms by means of the order in which cases are added or deleted. When adding
instances into a case base CB or removing instances from it, some case-base mining algorithms need to select
and evaluate each of the existing instances one by one. These algorithms are sensitive to the order in which
the instances are selected for addition or deletion. Otherwise, the algorithms are known as order insensitive.

Evaluation Criteria Yet another aspect that distinguishes different case-base mining algorithms is the evaluation
criteria for an instance or a set of instances to be considered as final cases. Some criteria are local measures
in which only the neighboring instances of the evaluated ones are involved. Others are global in that the
tested cases are evaluated in the entire set of the original training instances.

We now review the previous case-base mining algorithms along the search dimension. At the end of the section,
we categorize the algorithms along three different dimensions as given above, in Table 2. An early system is Hart’s
Condensed Nearest Neighbor algorithm (CNN) [19], which was an early attempt at finding a minimally consistent
subset of the training case set incrementally. Here consistent sets of cases are defined as any subset of T that offers the
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
doi:10.1016/j.artint.2007.04.018



ARTICLE IN PRESS ARTINT:2283
JID:ARTINT AID:2283 /FLA [m3SC+; v 1.73; Prn:18/06/2007; 23:07] P.4 (1-30)

4 R. Pan et al. / Artificial Intelligence ••• (••••) •••–•••
Table 2
Summary of the related works of case-base mining algorithms

Search Direction Order Sensitive Evaluation Criteria

Incremental Decremental Yes No Local Global

CNN [19]
√ √ √

RNN [18]
√ √ √

ENN [47]
√ √ √

SNN [34]
√ √ √

All k-NN [44]
√ √ √

Prototypes [10]
√ √ √

Deletion Policy
√ √ √

IB1 [2,3]
√ √ √

IB2 [2,3]
√ √ √

Shrink
(subtractive) [22]

√ √ √
IB3[2,3]

√ √ √
MCS [8]

√ √ √
TIBL [53]

√ √ √
Random mutation
hill climbing [39]

√ √ √
Encoding length [9]

√ √ √
ICF [7]

√ √ √
Addition Policy [54]

√ √ √
RISE [13]

√ √ √
EACH (NGE) [37]

√ √ √
RT Family [48]

√ √ √
DROP (RT)
Family [48,49]

√ √ √
COV, COV-FP [25,26,43]

√ √ √
RC, RC-FP [25,26,43]

√ √ √
RFC, RFC-FP [25,26,43]

√ √ √

same classification accuracy as T itself. As a addition strategy, CNN starts from a randomly selected initial subset CB
of the original case set T . Then it iteratively inserts cases into CB that are misclassified by the current case base CB.
This process continues until all cases in T are classified correctly by the case base CB. As such, CNN is also order
sensitive.

Also in the incremental category, Smyth and McKenna [25,26,43] proposed a series of effective coverage-based
algorithms such as COV-FP (MCOV), RFC-FP and RC-FP with different case-sorting techniques. Coverage and reach-
ability are defined as follows.

Definition 1 (Coverage [40]). Coverage(c) = {c′ ∈ CB: Adaptable(c, c′)}, where Adaptable(c, c′) means that c can
be adapted to solve c′’s problem within a given cost limit.

Definition 2 (Reachability [40]). Given a case base CB = {c1, . . . , cn}, ∀c ∈ CB,

Reachability(c) = {
c′ ∈ CB: Adaptable(c′, c)

}
.

Based on these definitions, algorithm COV-FP sorts cases into descending order of the size of their coverage set.
Algorithm RFC-FP sorts cases into ascending order of the size of their reachability set (see Definition 2). In addition,
algorithm RC-FP sorts cases into descending order of their relative coverage values, as defined as follows:

Definition 3 (Relative Coverage [42]).

RelativeCoverage(c) =
∑

c′∈Coverarge(c)

1

|Reachability(c′)| ,

where Coverage(c) and Reachability(c′) are as defined in Definitions 1 and 2.
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
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These algorithms adds large-coverage cases before other cases so that they can be added into a case base in order
of importance.

Zhang [53] presented an approach called Typical Instance Based Learning (TIBL) which keeps the case instances
near the center of clusters rather than at the border when mining a new case base. The reason is that these cases are
more robust and stable when used in case-based reasoning. Ritter et al. [34] extended presented the Selective Nearest
Neighbor algorithm (SNN). In this algorithm, every case in the original training case base is required to have a nearer
neighbor of a correct case in the new case base as compared to any other cases that belong to different solution
categories. If this condition is satisfied by a new case, then it is added to a case base.

Aha et al. [2,3] presented a series of instance-based learning algorithms, which are in the incremental direction.
IB1 is the standard one-nearest-neighbor (1-NN) algorithm. IB2 decides whether to add new training cases into a case
base in terms of the following procedure: if a new case to be added can already be classified correctly on the basis
of the current case base, which starts from an empty set, then the new case is discarded. In this way, only the cases
where the learner cannot classify correctly, in the order given, are stored. Thus this method is also order sensitive. The
problem with IB2 is that it can be easily affected by noisy cases, a problem that is overcome by the IB3 algorithm
[2,3].

Unlike the linearly ordered case-base mining algorithms, Skalak presented a method called random-mutation hill
climbing [39] to add instances to a case base. The method begins with m randomly selected instances in the training
case set T as starting cases, where m is a parameter that is supplied by the user. Then in each iteration, a randomly
selected instance in T is replaced by another randomly selected instance in T −CB, where CB is the current case base.
If this replacement strictly improves the classification accuracy of the cases in the training case set T , the decision to
change will be held. Otherwise, the change is reversed. This process is repeated for n iterations, where n is another
parameter provided by the user.

Rather than evaluating each case individually to tell its effectiveness in the resultant case bases, Cameron-Jones [9]
used an encoding-length heuristic to determine how good the subset CB is in describing the training set T . The basic
algorithm begins with a case-base-growing phase that takes each instance in T and adds it to the case base CB if the
addition results in a lower cost than not adding it, where a cost measure is defined according to the encoding length
heuristic.

The relation between cases can also be modeled geometrically, and case bases are evaluated based on the gen-
eralization ability. Salzberg [37] introduced a Nested Generalized Exemplar algorithm that considers each case a
hyper-rectangle conceptually. The case base is initialized with several randomly selected cases in the training case set
T . It then iteratively examines the instances to update the distance to a case which in turn updates the corresponding
hyper-rectangle. When a new case having the same solution as its nearest neighbors appears, the old case is general-
ized so that it covers the new cases as well. Similarly, Domingos [13] introduced an algorithm called RISE that mines
a case base from the training case set T where each case is treated as an if-then rule. For each case c in the case
base, RISE finds the nearest example case c′ in T to c that is not covered by c, and then generalizes a new case by
combining c and c′. This process repeats until no more rules are generalized during an entire pass.

Smyth and McKenna [41] extended the previous footprint-based models [40] of case-base competence from in-
dividual cases to groups of cases. They first defined the group coverage of a group of cases as a measure that is
proportional to the group size and inversely proportional to the average density of cases. More formally,

Definition 4 (Group Coverage [41]).

GroupCoverage(G) = 1 + |G| ∗ (
1 − GroupDensity(G)

)
,

where the group density is defined as the average similarity to other cases in the group.

The concept of a group is defined by an equivalence relation induced by mutual coverage of other cases in the case
base. In this manner, the competence of a case base is the sum of group-coverage values for all groups in the case base.
A case base is then constructed in order to increase the group coverage of a case base. Experiments on benchmark
domains showed that the concept of group coverage closely matches the competence of a case base.

Also along the incremental direction, McSherry presented the CaseMaker algorithm [27] to identify the “most
useful cases” to be added to a case base. In this method, the best case to add to a developing case-base is selected based
on an evaluation of the additional coverage that it provides. The case which provides the most additional coverage to
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
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the case-base is added. This method can be given greater autonomy in the construction of a case base, where the role
of a user is simply to provide solutions for cases selected by CaseMaker.

Yang and Zhu took a more theoretical approach in the incremental search direction when mining a case base. Given
a training case set T , the problem of finding an optimal case base of a smaller size M is shown in [52,54] to be NP-
complete [17]. Yang and Zhu designed heuristics to find near-optimal case bases under a uniform distribution. In their
case-addition algorithm, the new case base CB is initially empty. They repeatedly selected the cases from T that, of
those remaining cases, have the maximal coverage (see Definition 1) to be added to the new case base. Yang and Zhu
[52,54] proved that its case coverage is at least 63% of the optimal case base, for any fixed case-base size M under a
uniform distribution of the cases. This would make the algorithm near-optimal under uniform problem distribution in
the future.

Along the decremental search direction, there has also been a large number of previous works. A method known as
MC was introduced by Brodley [8], which keeps track of how many times a case is one of the k nearest neighbors of
another case in the final case base. This method allows the case distribution information to play a role, which is one of
our major motivations for our proposed method. In [8], if the number of mistakes the algorithm makes on a validation
case set is greater than the number of times the reasoning is correct, then the case is removed from the case base.

The Reduced Nearest Neighbor algorithm, or RNN [18] for short, is an extension of the CNN algorithm. This
algorithm can additionally remove noisy instances and so-called internal instances that are located inside the border
of a case cluster, the rationale being that these internal instances offer less benefit as compared to the boundary cases.
The resultant case base consists of cases that are scattered around the boundary of the case base. Along the decremental
direction, Wilson [47] developed the Edited Nearest Neighbor algorithm (ENN) that improves the previous methods
including CNN and RNN by keeping a smoother decision boundary around the clusters of cases. Tomek [44] further
extended Wilson’s algorithm with his All-k-NN method, by repeating the algorithm for an increasing number of
cases. A problem with the All-k-NN method is that it is relatively space inefficient. A slightly different decremental
algorithm is Chang’s algorithm [10], which reduces the case base size decrementally by repeatedly merging two cases
into a new case, thus reducing the case base sizes. These new cases are called the prototypes, which we can view as
the virtual cases that are similar to the concept of centroids in a K-means clustering algorithm.

Kibler and Aha [22] presented an algorithm called Shrink that decrementally updates case bases starting from the
training data. The main criterion used to remove a case is similar to that in the RNN method. While Shrink tests if the
removed instance is still classified correctly by the remaining cases, RNN considers whether the classification results
of other instances are accurate.

Smyth and Keane [40] presented a case-deletion-based approach. The premise of this approach is that each case
in the case base should be categorized according to its competence. These categorizations are made according to two
key concepts: coverage and reachability (see Definitions 1 and 2). They then defined four categories of cases: pivotal
case, support case, spanning case and auxiliary case. A case is a pivotal case if its reachability set includes just the
case itself. A case c1 is an auxiliary case if it is completely subsumed by another case c2 in the case base; that is,
the coverage set of c2 includes that of c1 as a subset, and that c1 and c2 are different. In this instance, the case c1 is
auxiliary and is thus considered less important than pivotal cases. In between the pivotal and auxiliary case categories
are the spanning cases that link together coverage sets of some other cases, and the support cases that exist in groups
in support of a problem to be solved.

From these definitions, we see that pivotal problems are the most unique, spanning problems are less unique, but
auxiliary problems are not unique at all. Based on this classification, Smyth and Keane’s footprint deletion (FD) and
footprint-utility deletion (FUD) policy delete auxiliary cases first, followed by support cases, then spanning cases,
and finally pivotal cases [40]. The difference between FD and FUD lies in that when there is more than one case
belonging to the same type of case, auxiliary, spanning, support or pivotal, FUD will delete the case with the lowest
utility instead of FD’s deletion of the case with the lowest coverage or largest reachability [40]. This approach was
shown to be better than a random deletion policy for preserving competence.

The RT1, RT2 and RT3 algorithms [48], developed by Wilson and Martinez, are also deletion-based algorithms.
RT1 is built on the relationship between the nearest neighbors set and the associates of each case, where the associates
of a case are cases whose nearest neighbors include the case itself. The RT1 algorithm removes cases that can be solved
using the remaining cases after its deletion. RT2 sorts the training set by the distances from their nearest enemy, which
is a case with a different solution. It then follows the same case-removal process as RT1. The difference between RT3
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
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and RT2 is that RT3 uses an additional noise-filtering process to remove instances that are misclassified by their k

nearest neighbors, while RT2 does not perform this filtering step.
Brighton and Mellish introduced an Iterative Case Filtering Algorithm (ICF) [7] that iteratively removes a case

whose absence produces better results as compared to retaining it. This algorithm uses coverage and reachability (see
Definitions 1 and 2) as the selective criteria. It repeatedly uses a deletion rule that removes cases whose reachability
size is greater than that of the coverage until the conditions of the rule are not satisfied. That is to say, ICF deletes a
case c if c is solved by more cases than those it can solve itself.

In order to keep both inaccuracy and redundancy low, two objectives that are often at odds with each other, Delany
and Cunningham [11] presented an interesting competence-based framework that included two phases to both remove
the noise by deleting incorrect cases and reduce redundancy in a case base. One objective is to reduce the damage that
certain cases are causing in misclassification. The approach was evaluated in the domain of spam email filtering. They
reported that too aggressive removal strategies can result in some loss of generalization accuracy due to overfitting.

We summarize the above related algorithms in Table 2 in terms of the three issues: search direction, order sensitivity
and evaluation criteria. We can see that the past literature on the case-base mining topic has large overlap, and yet
there are still several unfulfilled objectives in the previous research. Our proposed research (see Section 4) is aimed at
integrating the advantages of these previous works in a general case-base mining framework.

Some works in case-index-learning are also related to case-base mining. For example, in similarity function learn-
ing, Aamodt et al. [1] presented learning algorithms for similarity functions used in case retrieval. In learning indexing
structures, Bonzano et al. [6] explored how to learn the index of a case base when there is already a case base. Patterson
et al. [32] extended the use of K-means clustering algorithm for regression-based numerical value prediction.

As we discuss in Section 4, case-base mining is also closely related to feature selection and transformation in ma-
chine learning. In the field of machine learning, there has been much research in feature-space transformation with
kernel functions, which is a technique that we will exploit (see Section 4). In this area, some examples are Kernel Prin-
ciple Component Analysis (Kernel PCA) and Kernel Independent Component Analysis (Kernel ICA) [4,38]. Recently,
some researchers have proposed to use kernel transformations for case-based reasoning. For example, Corchado and
Fyfe et al. explored case-base mining with a unsupervised kernel method [16]. Pan et al. [30] proposed to use non-
linear similarity measures for case retrieval and presented some preliminary results in unsupervised frameworks. In
case-based reasoning, it is important to relate the input features and the target solutions. However, the previous works
that rely on an unsupervised framework do not address this issue satisfactorily due to the lack of global guidance
provided by the distribution of cases and their solutions. In order to use this relationship fully, in our work, as we
introduce in Section 4, we apply Kernel Fisher Discriminant Analysis (KFDA) [29,35] to a case base by taking into
account both the similarity measures and at the same time the solution distribution of cases in the kernel space.

3. A theoretical model for case-base mining

In this section, we wish to relate case-base competence with the choice of cases in a case base, in order to ensure the
competence of a case base. The competence concept is directly related to the potential “loss” that are made in solving
future problems. We first illustrate a motivating example. Then we define the notion of loss to denote the collective
mistakes made by a case-based reasoning system for solving problems. After that, we focus on the expected loss of a
mined case base and explore the relationship between the expected loss and the individual component case bases.

Many previous algorithms are based on categorizing and ranking cases according to how many other cases can
cover them. However, this coverage-based approach alone may not handle noisy cases well. To understand this better,
consider an example where the distribution of cases is as shown in Fig. 1. In this figure, each circle or star represents
a case. Suppose that we use a one-nearest-neighbor algorithm (1-NN) to find the solution for new cases. Assume that
each case can be covered by one of its nearest neighbors, if it is of the same shape (a circle or a star). As a result, we
can see that the dark circle and star are two cases that are unique; that is, no other cases can cover them. However, if
they are selected in the final case base, even though other cases might be selected as well, the white circles around
the black star will be misclassified as a star, and similarly the white star will be classified as a circle. These two noisy
cases may cause errors depending on what future problems are input. Thus, from this example, we see that ranking
cases by coverage only might mislead a case-base mining algorithm to choose the noisy and outlier cases. In this
paper, we study how to filter out these noisy cases through feature selection and case selection.
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
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Fig. 1. Illustrating noisy cases.

In general, there is a need for some theoretical guidance as to how to select cases into a high competence case base.
In addition, a feature transformation may be necessary to allow better correlation between the problem descriptions
of case clusters and their solutions. This is done so that the true coverage of cases can be maximized in a transformed
feature space, as we see in Section 4 after the model building for case-base mining in the next subsection.

We model the ranking process of case-based reasoning as follows. Given an input problem �x, we search a case base
CB for k most similar cases. Among the k cases, one or more solutions will be chosen for adaptation. Some case-based
reasoning algorithms use the one-nearest neighbor as the final solution for adaptation, others allow all k cases to vote
and select a majority solution. Still some others integrate a subset of the k solutions into a final one. These situations
can be jointly represented using a solution vector defined as follows.

Definition 5 (Solution Vector). Let l be the size of the solution set S in the domain. For a given input problem,
a solution vector �s is defined as an l-dimensional vector �s = (s1, s2, . . . , sl ), where si ∈ [0,1]. Each element in a
solution vector represents a probabilistic vote on how likely that solution is the final solution. The sum of all elements
in a solution vector is one.

Therefore, for example, in a binary classification problem, the vector length l = 2. In general, any solution can
be represented by a solution vector. For example, a solution s2 ∈ S, where S is a size l set, can be represented as
(0,1,0, . . . ,0), where only the second element is 1, and the rest are 0. A solution vector can be used to represent a
chosen solution to a case-based reasoning problem in a probabilistic sense as well. For instance, suppose that there
are three different solutions in the domain and we use a 5-NN algorithm. If three nearest neighbors vote for the first
solution s1, whose distances to the new problem are 0.4,0.5 and 0.5 respectively, two nearest neighbors vote for the
second solution s2, whose distances to the new problem are 0.4 and 1 respectively, and there is no vote for the third
one, the solution vector should be the weighted sum vector (0.65,0.35,0). Here, for example, 0.65 is computed by
(1/0.4 + 1/0.5 + 1/0.5)/(1/0.4 + 1/0.5 + 1/0.5 + 1/0.4 + 1/1). According to this solution vector, we return the first
solution s1 for the problem, as the proportion of it is 0.65.

Using the solution vector defined above, we can now treat the difference between a solution found by a CBR
system and the true solution vector as a vector of difference. For example, using the above example, the difference
vector should be (−0.65,0.65,0) if the true solution is s2. The L2-norm of this difference is then taken as the error or
loss value for the problem we are trying to solve. An important effect of using the concept of a solution vector is that
the error can be defined for both real value and discrete type solutions. They are treated in a similar way using this
formalism, and thus we can include in this formalism both regression type of inference and logical and plan-based
inference using CBR, which we pursue in the future.

We now consider the effect of choosing a subset of the training case set as a case base, and measure the quality of
the expected solutions by using the case base to solve problems. The operation of a case base reasoning algorithm can
be formalized using a mapping function f that maps from a problem �x and a case base, which is also a case set, to a
solution vector. We call f a k-NN estimator.
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
doi:10.1016/j.artint.2007.04.018
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Definition 6 (k-NN Estimator). Given a problem feature vector �x, a case set T, and some similarity-function parameter
set Θ (Θ is a collection of parameters that specify the form of a similarity function), a parameterized k-NN Estimator
f (�x;T, k,Θ) maps �x to a solution vector �s ∈ [0,1]l , where �s = (s1, s2, . . . , sl ).

The parameter set Θ can specify the form of the similarity function and its parameters. Note that in Definition 6,
si (i = 1, . . . , l) can be viewed as the weight of the ith solution si estimated by f . Additionally, for simplification, we
will omit some parameters of f . That is, when there is no ambiguity, instead of f (�x;T, k,Θ), we write simply f (�x)

or f to express the estimation of problem �x.
For a problem �x, we define the k nearest neighbor cases of the problem as a set of candidate cases by similarity.

These cases are called the candidate reachability set of the problem.

Definition 7 (Candidate Reachability Set of a Problem). CRS(�x;T, k,Θ) is defined as the set of k nearest neighbors
of a problem �x given a case set T and similarity-function parameter set Θ .

Notice the difference between CRS(�x;T, k,Θ) and the reachability set of a problem as defined in Definition 2.
The reachability set is the set of cases whose solutions can actually solve �x, whereas the candidate reachability set
is the set of cases that are considered as candidate cases for solving �x due to their close distances. Some cases in
CRS (�x;T, k,Θ) actually give incorrect solutions.

Similar to CRS, we define the candidate coverage set of a case as the set of problems that a case c is similar to;
thus the case c can be a candidate for solving these problems. However, c may not always be the correct solution.

Definition 8 (Candidate Coverage Set of a Case). CCS(c;T, k,Θ)
�= {�x | c ∈ CRS(�x;T, k,Θ)}.

Similar to the difference between CRS(�x;T, k,Θ) and reachability set of a problem, the candidate coverage set
of a case and the coverage set of a case as defined in Definition 1 are also different. The difference lies in that some
problems in the CCS cannot actually be solved using the case c, because the latter is purely computed using similarity.

We formally define a loss function to denote the amount of error incurred in solving a problem �x.

Definition 9 (Loss). Consider the predicted solution f (�x) and the true solution vector �s. Their difference is captured
using the loss function L : [0,1]l × [0,1]l → R. The L2-norm loss function is defined as

L
(
f (�x),�s) = ∥∥f (�x) − �s∥∥2

. (1)

The expected loss (over the raw case set T ) of the k-NN estimator f is

E�x,�s
[
L

(
f (�x),�s)] =

∫
T

∥∥f (�x) − �s∥∥2 d�x d�s. (2)

When we deal with discrete cases and solutions, we replace the integration with the summation. The goal of case-
base mining is to search for the optimal CB ⊆ T , k and Θ that maximize the expected competence of CB, which is
equivalent to minimizing the E�x,�s[L(f (�x;CB,k,Θ),�s)]. That is,

(CB∗, k∗,Θ∗) = arg min
CB,k,Θ

E�x,�s
[
L

(
f (�x;CB, k,Θ),�s)] (3)

= arg min
CB,k,Θ

∫
T

∥∥f (�x;CB, k,Θ) − �s∥∥2 d�x d�s. (4)

We now show how to decompose the expected loss into its components so that we can infer some general criteria for
reducing the expected loss function. First, since case-based reasoning is based on finding the k nearest neighbors of a
problem, and each individual case defines its own corresponding estimator, a k-NN estimator f (·) can be decomposed
into the sum of weighted nearest neighbor components as follows:

f (�x;T , k,Θ) = 1∑k
i=1 ωi

∑
ωif

(�x; {ci},1,Θ
)
. (5)
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
doi:10.1016/j.artint.2007.04.018
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The weights ωi in Eq. (5) can be defined in various ways. One method is to define it by similarity such that the
weight is proportional to the similarity measure. An alternative is to define it probabilistically. In either case, the
weight should reflect the importance of a case as accurately as possible.

Theorem 3.1. Let

g(�x; ci)
�= ωi∑k

n=1 ωn

(
f

(�x; {ci},1,Θ
) − E�s|�x[�s]

)
.

The expected loss function can be decomposed as

E�x,�s
[
L

(
f (�x;CB,k,ω),�s)] = Bias + Covariance + Noise, (6)

where

Bias =
M∑
i=1

E�x∼CCS(ci )

[∥∥g(�x; ci)
∥∥2]

, (7)

Covariance =
M∑
i=1

E�x∼CCS(ci )

[ ∑
cj ∈CRS(�x;CB,k,Θ)

i �=j

〈
g(�x; ci), g(�x; cj )

〉]
, (8)

Noise = E�x,�s
[∥∥E�s|�x[�s] − �s∥∥2]

. (9)

The proof of this theorem is given in Appendix A. Theorem 3.1 underlies several important points in case-base
mining, in terms of minimizing the three terms of Eq. (6). We summarize the implications as follows.

• First, to reduce the expected loss of Eq. (6), we need to minimize the three terms of the right-hand side of Eq. (6)
simultaneously. Note that the “noise” term in Eq. (9) reflects of the consistency of solutions in the case base, and
does not depend on the choice of the estimator. Thus, if we can select a good set of features while reducing the
potential noise, we can reduce the noise term in the loss function. We see that this can be achieved by performing
feature selection as well as feature transformation using kernels.

• Second, to reduce the “Bias” term (Eq. (7)), we should make each case ci able to solve most of the problems close
to it in terms of the relative similarity ωi/

∑k
n=1 ωn. This observation supports the idea that cases selected into a

case base should have as much coverage as possible.
• Third, to reduce the term “Covariance” (Eq. (8)), we can lower the term ωi/

∑k
n=1 ωn or ωj/

∑k
n=1 ωn, as

(f (�x; {ci}, k,Θ) − E�s|�x[�s]) is bounded. This can be done by increasing the dissimilarity between different cases
ci and cj , so that when one weight is large, another weight is small. Moreover, the “Covariance” term can be
reduced if f (�x; {ci}, k,Θ) and f (�x; {cj }, k,Θ) are orthogonal, since this will reduce the inner product〈

f
(�x; {ci}, k,Θ

) − E�s|�x[�s], f
(�x; {cj }, k,Θ

) − E�s|�x[�s]
〉
. (10)

This again means that we should strive to make the case base as diversified as possible so that the dissimilarity
between all pairs of cases are large.

• In addition, we can see that the similarity parameter set Θ can also affect the “Bias” and “Covariance” terms.
In Section 4.4, we introduce a kernel transformation for this purpose, as we can have a large number of both
linear and nonlinear functions that can be used to model the similarity of two vectors. For instance, a linear kernel
function is equivalent to the Euclidean distance function that is commonly used.

4. Case-base mining algorithms

From the analysis in Section 3, we consider the following guidelines for discovering a “good” case base from a
case set T :

• Each case should cover as much of the problem space as possible to reduce the potential bias, and
• The cases should be as diverse as possible to reduce co-variance in producing errors.
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
doi:10.1016/j.artint.2007.04.018
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When designing our case-base mining algorithm, we consider both these conditions. In this section, we show how to
enlarge the coverage of a case by applying the Fisher Discriminant Analysis (FDA) [15] to select features and remove
noise. When selecting the next case to be added to a case base, we try to maximize the diversity of the case base
through the introduction of a diversity measurement.

4.1. Feature extraction in the original problem space

Case-base mining aims to extract a case base from a training case set where cases can cover the future problem
space. In this subsection, we perform the Fisher Discriminant Analysis to find candidate features. In the next subsec-
tion, we discuss the case-base mining problem.

FDA was first developed by Fisher [15] for linear data analysis. Classical linear discriminant analysis is a statistical
method that attempts to project data vectors that belong to different solution categories into a lower dimensional space
where data points belonging to similar solutions become closer and those with different labels become more separable.
For simplicity, below we assume that the case solutions have been partitioned into l different solution categories or
classes.

Assume that we are given a case set T = {c1, c2, . . . , cN } where ci denotes a case which is a pair of problem features
and a solution (�xi, si), where �xi ∈ R

d and si is the solution part of the case, after we have transformed all symbolic
or nominal features to numeric ones. Various methods for such transformation have been designed. For example, a
three-valued symbolic attribute can be transformed to three binary valued numerical attributes, each being of the form:
for each symbolic attribute Ai with values vi, i = 1,2,3, we invent a new attribute (Ai = vi) corresponding to each
value vi (see Chapter 2 of [50]). Suppose that Xi = {�xi

1, �xi
2, . . . , �xi

li
} is the set of cases with the same solution category

si . The centroid �mi of Xi can be calculated as �mi = l−1
i

∑li
j=1(�xi

j
), and li is the size of Xi . Then the total difference of

the cases corresponding to the same solution si can be expressed as SW = ∑l
i=1

∑li
j=1 (�xi

j − �mi)(�xi
j − �mi)

ᵀ, where ᵀ
is the transpose operator, and the sum of distances between any two centroids of different solutions can be expressed
as SB = ∑l

i,j=1( �mi − �mj)( �mi − �mj)
ᵀ. FDA attempts to find a new direction �w such that the projection of SB can

be maximized while the projection of SW can be minimized. That is, given a vector �w, we need to maximize the
following formula

J (�w) = �wᵀSB �w
�wᵀSW �w . (11)

The computational details of FDA can be found in [15,20,21].

4.2. Case-base mining

With the eigenvectors found by solving Eq. (11), we wish to then find a case base of size M , where M is an
empirically computed value. Suppose that we have found the most correlating direction �w extracted by FDA. Consider
how to mine a new case base that has a size smaller than the raw case set T for efficient case retrieval. To achieve this,
we need to find the most representative cases for the same solutions. We define a global diversity among the mined
case base with respect to the raw case set T as the spread of the cases among the data which we wish to maximize.

We define an evaluation function for cases that can combine two factors: the importance of a case in terms of
its projection onto an eigenvector �w, and its diversity score with respect to the cases that are mined already. These
functions are defined below. In the functions, CB is a case base.

Eval(CB) = weight(CB) ∗ globaldiv(CB), where (12)

weight(CB) =
∏

ci∈CB

(wi ), and (13)

globaldiv(CB) = min
ci ,cj ∈CB

dissimilarity(ci, cj ). (14)

In Eq. (14), globaldiv(CB) is the global diversity measure of a case base CB. dissimilarity(. , .) represents the dis-
similarity of two cases, which can be defined as the Euclidean distance between the two cases. We can replace the
Euclidean distance with other measures of case distances.
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
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Table 3
Linear greedy case-base mining (LGCM) algorithm

LGCM(T ,M)
T is the case set, M is the maximum size of case base to be mined.

1 Run FDA on T to find the direction �w
2 CB = ∅
3 U = T

% Steps 4 to 7 find the initial seeds for the case base.
4 for every si ∈ S, Ti = {(�xi

j
, si ) | (�xi

j
, si ) ∈ T }

5 Compute the projection wi
j

of each data record �xi
j

onto �w
6 Select the case c with largest wi

j
, CB = CB ∪ {c}, U = U − {c}

7 end for
8 while U �= ∅ and |CB| < M

9 Select the case c with largest evaluation value: Eval(CB ∪ {c})
10 CB = CB ∪ {c}, U = U − {c}
11 end while
12 return CB

Based on these functions, we present a case-base mining algorithm in Table 3.
In this algorithm, T and M are the input parameters representing the case set and the size of the resulting case

base, respectively. M can be determined by increasing its values and selecting the value for M that gives an optimal
competence level. In Table 3, after performing FDA in Step 1, the LGCM algorithm first finds a case c with the largest
projection onto a direction �w for each solution si in Step 5. These cases are added to the case base in Step 6. Then, we
find subsequent cases whose diversity is the largest (Step 9). We add this case to the case base in Step 10. We continue
until there are M cases selected or all the cases in T are selected.

4.3. Kernelized greedy case-base mining algorithm

In the previous section, we have proposed a case-base mining algorithm using FDA. The assumption of FDA is
that data points belonging to different solutions can be separable in the original problem space. This assumption is not
necessarily true in many applications. In that case, FDA cannot perform well in noise removal. To solve this problem,
in this section we apply a nonlinear FDA algorithm, which is called Kernel Fisher Discriminant Analysis (KFDA) and
is proposed in [29,35]. Our aim is that through the transformation on the feature space, cases with similar solutions
can be brought closer together even when they do not appear close to each other in the original problem description.

The main idea of kernel methods [29,35] is to build feature space mappings indirectly, by performing dot products
on problem vectors which can be computed efficiently in high-dimensional spaces. Examples of this type of algorithm
are Support Vector Machines [45] and Kernel Principal Component Analysis [38]. Using this “kernel trick”, instead
of mapping the data explicitly, we can seek a formulation of the algorithm that uses only dot-products 〈φ(x),φ(y)〉
of the problem features, where the function φ maps an input vector to a high dimensional feature space. As we are
then able to compute these dot-products efficiently we can solve the original problem without ever mapping explicitly
to the possibly much larger feature space F . This can be achieved via a kernel function k(�x1, �x2) = 〈φ(�x1),φ(�x2)〉.
Possible choices of the k(., .) functions include the Gaussian (RBF) kernel, where k(�x1, �x2) = exp(−‖�x1 − �x2‖2/σ 2),
or the polynomial kernels, where k(�x1, �x2) = 〈�x1, �x2〉d , for some positive constants σ 2 and d , respectively.

We wish to apply the kernel feature transformation to case-base mining. Assume that we are given a training case
set T = {c1, c2, . . . , cN } where ci denotes a case which is a pair of problem attributes and solution (�xi, si) where
�xi ∈ R

d . KFDA first maps the attribute part of the cases into a feature space with a function φ. The resulting set
is X = {φ(�x1),φ(�x2), . . . , φ(�xN)}. Suppose that Xi = {φ(�xi

1),φ(�xi
2), . . . , φ(�xi

li
)} is the set of cases with the same

solution si in the feature space. The centroid �mi of Xi can be calculated as �mi = l−1
i

∑li
j=1 φ(�xi

j
), and li is the

size of Xi . Then the total differences of the cases corresponding to the same solution si can be expressed as Sw =∑l
i=1

∑li
j=1 (φ(�xi

j ) − �mi )(φ(�xi
j ) − �mi )

ᵀ, and the sum of distances between any two centroids of different solutions

can be expressed SB = ∑l
( �mi − �mj )( �mi − �mj )

ᵀ. KFDA attempts to find a new direction �w such that the projection
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
doi:10.1016/j.artint.2007.04.018
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Table 4
Kernel greedy case-base mining (KGCM) algorithm

KGCM(T ,M)
T is the training case set, M is the maximum size of case base to be mined.

1 Run KFDA on T to find the direction �w
2 CB = ∅
3 U = T

% Steps 4 to 7 find the initial seeds for the case base.
4 for every si ∈ S, Ti = {(�xi

j
, si ) | (�xi

j
, si ) ∈ T }

5 Compute the projection wi
j

of each data record �xi
j

onto �w
6 Select the case c with largest wi

j
, CB = CB ∪ {c}, U = U − {c}

7 end for
8 while U �= ∅ and |CB| < M

9 Select the case c with largest evaluation value: Eval(CB ∪ {c})
10 CB = CB ∪ {c}, U = U − {c}
11 end while
12 return CB

of SB can be maximized while the projection of SW can be minimized. That is, given a vector �w, we need to maximize
the following formula

J (�w) = �wᵀ
SB �w

�wᵀSW �w . (15)

By the substitutions of

�wᵀ
SB �w = �αᵀM�α, (16)

and

�wᵀ
SW �w = �αᵀN�α, (17)

where M = (M1 − M2)(M1 − M2)
ᵀ, (Mi)j = 1

li

∑li
m k(xj , x

i
m), N = ∑

j=1,2 Kj(I − 1lj )K
ᵀ
j , Kj is a l × lj matrix

with (Kj )nm = k(xn, x
j
m) , and I is the identity and 1lj the matrix with all entries being 1/lj [29], maximizing Eq. (15)

is equivalent to maximizing

J (�α) = �αᵀM�α
�αᵀN�α . (18)

More computational details of KFDA can found in [29,35].
A kernelized case-base mining algorithm is given in Table 4. In this algorithm, we replace the FDA in LGCM with

KFDA. The computational complexity of KGCM can be analyzed as follows. The cost of the KFDA computation is
O(N3) (N is the size of the training case set) [28]. Recently, more efficient algorithms are proposed [36,51]. The time
complexity of [36,51] is O(N ∗ d ∗ l), where d is the dimension of a training case set, and l is the number of solution
categories. The time complexity for the rest of the KGCM algorithm is O(N ∗ M). In contrast, the time complexity of
LGCM is O(d3 + N ∗ d ∗ l + N ∗ M), which is smaller than that of KGCM when the dimensionality of the training
case set is smaller than the size of the training case set.

4.4. An illustrative example

We now consider an example to illustrate our case-base mining algorithm KGCM. We use a case set that is an
artificially generated spiral case set used to illustrate the effect of a nonlinear case base, where the raw case set is
adapted from [14]. The solution set of this case set consists of two categories: positive and negative. The case set
comprises 1000 cases in each category. In this example, we wish to extract a subset of M cases as a case base which
can accurately classify a test case set into either a positive or a negative category. Therefore, for this example, the task
for a CBR system is to classify problem feature vector into one of two classes, positive and negative.

We perform the KGCM algorithm on this case set (see Fig. 2), where “oripos” means the original data that belong
to the solution “+1”, and “orineg” means the data associated with the solution category “−1”. Similarly, “poscase”
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
doi:10.1016/j.artint.2007.04.018
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Fig. 2. Spiral data with 14 cases found for each solution by the KGCM algorithm.

corresponds to the data points that are associated with the solution category “+1”, and similarly for solution “−1”.
Here, we use a Gaussian kernel with the σ 2 = 4. This example shows that when we mine cases from a training case
set, we need to consider both the diversity and the representativeness of the cases. First, we can see that this problem
space is nonlinear in nature, such that any naive method for selecting representative cases, such as a random selection
method or a simple selection of cases on either side of the chart, may fail to find a good case base. Second, although
the training case set in the original space is nonlinear, it can be transformed into a linearly separable space by means
of a kernel transformation. In the feature space, it is then possible to perform a linear separation of the cases. Finally,
when we select cases for this problem, we should avoid selecting cases that belong to a single region; instead, we
should choose cases by maximizing the global diversity. The resultant case base shown in the figure, which consists
of the stars and diamonds, are the output of the KGCM algorithm when the case base size M = 14. As we can see,
this case base is of high quality due to the representativeness of the cases and the diversity of their distribution.

5. Experimental analysis

We wish to show that KGCM benefits from superior effectiveness and performance in terms of competence as
compared to previous algorithms for case-base mining. We test this claim on a number of case bases in a compari-
son with case-deletion, case-addition, CNN-FP, COV-FP, RFC-FP, RC-FP and ICF algorithms. Our experiments are
performed on a synthetic case set [14] and several publicly available case sets from UCI and Delve Data Repositories
[5,33]. These case sets, covering a wide variety of problem domains, have been used as benchmark data. The ones that
we use in our experiments include: adult, australian, balance, banding, cars, chess, cleve, crx,
diabetes, flare, german, heart, hepatitis, hungarian, hypothyroid, iris, led24, liver-
disorder, monk1, monk2, monk3, mushroom, sick-euthyroid, sleep, tic-tac-toe, tokyo, ve-
hicle, vote, waveform, wine, wdbc, optdigits, pendigits, shuttle, satellite, ionosphere,
scale, sonar, ringnorm, twonorm, and spiral.2

In all experiments we compare the competence of the case base against the size ratio of the mined case base to the
training case set; we call this percentage the “ratio of case base size” in the experiments. Let Xt be a test set, Anew(Xt )

2 The first 38 case sets are from the UCI machine learning repository [5]. The ringnorm and twonorm are case sets of Delve [33]. The
spiral case set is from the classification toolbox in [14].
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Fig. 3. Comparing the competence of case mining algorithms under different values of k in k-NN search.

be the percentage of new problems among the problem set Xt that can be solved by our case base, and Aoriginal(Xt )

be that of the training case set. We define the competence of the new case base as

Comp(Xt ) = Anew(Xt )

Aoriginal(Xt )
. (19)

Note that in this definition, the competence Comp(Xt ) depends on the test set Xt . Note also that it is possible for the
competence to be greater than 100%, in which case the case base found by an algorithm is better at solving future
problems than the original case set. Section 5.2 presents the comparisons between KGCM and case-deletion (footprint
deletion policy FD [40]) and case-addition [54] algorithms. And Section 5.3 presents the comparison between KGCM
and CNN-FP, COV-FP, RFC-FP, RC-FP and ICF.

5.1. Impact of the number of nearest neighbors

The computation of competence depends on the search for similar cases in both the original case set and the mined
case base. The number of nearest neighbors k is an important parameter in this computation. We wish to determine a
proper value of k for the rest of the experiments. To do this, we run experiments on eight UCI case sets (pendigits,
satellite, sonar, scale, optdigits, wdbc, ionosphere, shuttle), while varying k from 1 to 9 on
every other value. For each case set, we randomly split the case set into 2/3 for training and 1/3 for testing, and we
repeat the process 20 times. In each round, we vary the ratio of the case base size to the original case set size at 1, 3,
5, 10, 15, 20 and 25% for every fixed value of k. Fig. 3 shows the experimental results. We can see from this figure
that the average competence when k = 1 is higher than other values of k for all algorithms. We believe that when the
case base is sparser than the original case set, the distances between a new case and similar candidate solution cases
when k > 1 can be much larger than that of k = 1. Therefore, we are able to obtain the highest competence when we
use a one-nearest neighbor algorithm. In the remaining experiments in this paper, we will set k = 1 for the k-nearest
neighbor search.

5.2. KGCM vs. case-deletion and case-addition algorithms

For each application domain, we validate our KGCM algorithm with 1-NN as the underlying CBR similarity
retrieval function. In every experiment, we use 1-NN to classify the testing data with all the training data to obtain a
baseline. To test the proposed algorithms, we apply three case-base mining algorithms that we discussed before on the
training data and validate the mined case bases on the testing data. These three case-base mining algorithms are: our
KGCM, LGCM and case deletion algorithms using the footprint deletion policy FD [40], where the sizes of the final
case bases, varied in different comparisons, are set to be equal in each comparison. LGCM applies the FDA without
using kernels, which serves as a baseline because we wish to test the effectiveness of using kernels separately.

In these experiments, cross validation is performed by randomly partitioning the raw case set into a training case
set (2/3) and test case set (1/3). We first use each of the three algorithms to mine the case bases from the training
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
doi:10.1016/j.artint.2007.04.018
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Fig. 4. Spiral case set: Competence of the case bases mined by KGCM and other case-base mining algorithms using 1-NN.

case set. Then we validate the mined cases on the test case set. We repeat this training and test process 20 times, and
compute the average results as the performance of the algorithm.

For the spiral raw case set, we split the original 2000 raw cases into 1200 cases as the training case set and 800
cases as the test case set. Fig. 4 shows the comparison result. In the figure, we compare the case-base mining algo-
rithms on the accuracy obtained from an 1-NN classifier. The experimental result indicates that for the classification
problem, the KGCM algorithm has higher competence than the LGCM algorithm and case-deletion algorithm in the
original space. We attribute this success to the result of using the diversity measure and the introduction of nonlinear
transformation using Gaussian kernels. As the ratio of case base size increases from 1% to 5%, we can see from Fig. 4
that KGCM rises most rapidly towards the optimal competence level. Comparatively, the other two algorithms are
rather slow to respond. When they all reach 25% in size ratio, the difference between the KGCM and case-deletion
policy is very small.

In Section 2, we mentioned that the case-deletion policy may be sensitive to noise. In the following experiment, we
compare the competence of the spiral case set against the percentage of the amount of noise added to the training
case set; we call this percentage the “noise ratio” in this experiment. Fig. 5 shows the comparative performance
between the case-deletion policy and the KGCM algorithm when there is some noise in the training case set. The
figure shows the competence curves over different noise ratio values for the KGCM algorithm and case-deletion
policy. We can see that the KGCM algorithm is more robust than the case-deletion policy when noise increases.

To further validate the KGCM algorithm, we conduct experiments on eight UCI case sets to compare the KGCM
algorithm, case deletion policy (FD [40]), case addition policy [54] and LGCM (see Fig. 6). In most experiments, the
KGCM algorithm has higher competence than the case-deletion policy. One reason for this high performance is that
by applying the KFDA, we can find the most important features for the determination of case coverage, rather than
using the full set of features given in the input. This makes it possible to focus on the most important features of the
case in mining the case base.

Furthermore, when the coverage of each case is relatively small, the reachability of all cases are small. However,
after a feature transformation, the coverage of cases can become much larger. This essentially makes it possible to use
a smaller number of cases to achieve the same level competence after the transformation. In the experiments, we also
compare the KGCM and LGCM algorithms. We also find that KGCM outperforms LGCM, which implies that using
kernels in the case-base mining algorithm is important for most of these problems. In the following experiments, we
only compare KGCM with the previous algorithms.

In addition, we conducted 32 more experiments on most UCI and Delve case sets that can be solved using k-NN
algorithms, to compare the KGCM algorithm, case deletion policy and the case addition policy (see Figs. 7–10).
Again, KGCM wins in all 32 domains under the tests. We notice that the case-addition algorithm performs poorly in
some of the domains, which can be attributed to the fact that it only considers case-coverage as a quality measure, and
does not consider case diversity as in KGCM.

In the experiments in Figs. 6–10, we also find another interesting phenomenon where the competence of KGCM
sometimes increased above 100%. For instance, in the experiments on the scale and wdbc case sets (Fig. 6), we find
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
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Fig. 5. Competence trends of KGCM and case-deletion policy with different noise ratio.

that the competence of KGCM increased above 100% when the ratio of case base size reached 3% and 25% respec-
tively. This also happens in Figs. 7–10, including the adult, australian, cleve, crx, diabetes, flare,
hepatitis, hungarian, german, heart, hypothyroid, iris, led24, monk2, sick-euthyroid,
tokyo, sleep, twonorm, vote, and waveform case sets. However, this happens less frequently for case dele-
tion and addition policies. This shows that, in some situations, the competence of the case base generated by KGCM
algorithm are indeed of higher competence than the other algorithms.

5.3. KGCM versus CNN-FP, COV-FP, RFC-FP, RC-FP and ICF

In this section, we compare the KGCM algorithm with the classical case-base editing methods such as CNN-FP,
COV-FP, RFC-FP, RC-FP [25,26,43] and ICF [7], which are reviewed in Section 2. Our experiments are performed
on 24 publicly available raw case sets from the UCI Data Repository.

For each application domain, we validate every algorithm with 1-NN as the underlying similarity-retrieval function.
In all the experiments, we randomly separated the raw case set into the training case set (2/3) and test case set (1/3).
We first use the algorithm to mine the cases from a training case set. Then we validate the mined cases on the test
data. We repeat this training and testing process 10 times, and compute the average result as the performance of the
algorithm.

As mentioned in Section 2, CNN-FP is an order-sensitive approach. The algorithms COV-FP, RFC-FP and RC-FP
represent three different case-sorting criteria in which important cases are considered before the less important ones.
In other words, the earlier a case is selected by the case-base mining algorithm, the more important this case is. In
Figs. 11–13, we compare KGCM with the other three algorithms when the ratio of case base size increases from 1%
to 25%, respectively. In these figures, the notation 1% denotes the top 1% of the most important cases in the training
case set. We find that KGCM outperforms the other three algorithms on many case sets.

Unlike the four algorithms mentioned above, the ICF algorithm uses the case-deletion policy. ICF removes the
cases whose reachability size is greater than that of coverage. With this deletion policy, ICF can remove many low-
quality cases efficiently and keep a few high quality cases as the resulting case base. Under this stop criterion of
the ICF algorithm, it is difficult to control the ratio of case base size from 1% to 25% as in above experiments. In
fact, in our experiments on ICF, it will stop at very different points of case base size (see Table 5). In the following
experiments, we only compare the competence of KGCM and ICF at the same level of case base size. We conduct
experiments to compare KGCM with ICF over the same 24 case sets (see Table 5). We find that KGCM outperforms
the other algorithms over 23 case sets. We also performed a t-test to assess whether the mean values of expected
competence in the test case set that are discovered by different algorithms are statistically significantly different from
each other. We find that the mean of competence over the test case set based on ICF is 83.56 while the value based on
KGCM is 100.62. With a t-value as 3.78 and a confidence level being 99.5%, this indicates that the difference in the
mean values are significant. Furthermore, the KGCM algorithm results in higher competence in all the case sets that
we experimented on even when the case-base sizes are very small. In contrast, ICF only has very low performance in
most case sets. This shows that KGCM is more robust and steady as compared to the other algorithms.
Please cite this article in press as: R. Pan et al., Mining competent case bases for case-based reasoning, Artificial Intelligence (2007),
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Fig. 6. Competence of the case bases mined by KGCM and other case-base mining algorithms using 1-NN.
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Fig. 7. Competence on the case base mined by KGCM and other case-base mining algorithms using 1-NN. (Part I.)
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Fig. 8. Competence on the case base mined by KGCM and other case-base mining algorithms using 1-NN. (Part II.)
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Fig. 9. Competence on the case base mined by KGCM and other case-base mining algorithms using 1-NN. (Part III.)
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Fig. 10. Competence on the case base mined by KGCM and other case-base mining algorithms using 1-NN. (Part IV.)
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Fig. 11. Competence on the case base mined by KGCM, CNN-FP, COV-FP, RC-FP and RFC-FP using 1-NN. (Part I.)
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Fig. 12. Competence on the case base mined by KGCM, CNN-FP, COV-FP, RC-FP and RFC-FP using 1-NN. (Part II.)
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Fig. 13. Competence on the case base mined by KGCM, CNN-FP, COV-FP, RC-FP and RFC-FP using 1-NN. (Part III.)
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Table 5
Competence and ratio of case base size for each domain. The value in parentheses denotes the ratio of case base
size and the value outside the parentheses denotes the competence value of the resulting case base

Domain ICF KGCM

australian 75.19(5.39) 97.58(5.00)

balance 106.43(63.89) 102.46(25.00)

banding 70.53(12.80) 94.05(10.00)

car 82.93(14.53) 101.98(15.00)

cleve 87.53(5.55) 108.99(5.00)

crx 67.41(3.26) 97.26(3.00)

diabetes 83.88(3.60) 103.17(3.00)

flare 83.63(13.53) 104.15(15.00)

german 81.90(5.37) 104.01(5.00)

heart 87.85(5.86) 105.99(5.00)

hepatitis 98.34(4.95) 107.63(5.00)

hungarian 92.95(7.46) 104.78(10.00)

ionosphere 66.92(4.12) 92.08(5.00)

iris 88.73(12.67) 95.93(10.00)

liver-disorder 86.65(11.16) 97.14(10.00)

monk1 73.86(13.54) 85.486(15.00)

monk2 138.91(3.04) 164.4(3.00)

monk3-org 75.16(4.54) 81.078(5.00)

sonar 72.07(11.28) 82.33(10.00)

tic-tac-toe 79.82(4.19) 89.72(5.00)

tokyo 61.10(4.88) 100.92(5.00)

vehicle 85.62(16.01) 92.38(15.00)

vote 74.10(2.30) 102.78(3.00)

wine 84.06(6.45) 98.50(5.00)

Mean 83.56 100.62

5.4. Summary

We now summarize and explain the experimental results.

• We can see from our experiments that the competence of case bases computed by the KGCM algorithm generally
increases with the case base sizes. In particular, while all algorithms perform increasingly better for larger case
bases, KGCM generally performs the best among all baselines. An exception is the flare domain (see Fig. 8). In
this domain, the competence of all algorithms that we tested tends to decrease when the case base size increases.
We believe that this can be attributed to the fact that this problem domain contains much noise to start with, which
makes it difficult to use a subset of cases to represent all cases. However, we can also observe that even in this
domain, KGCM still outperforms the rest.

• For the balance domain (see Fig. 11), the algorithms RC-FP and COV-FP outperformed the KGCM algorithm.
These two algorithms use the relative coverage and coverage (see Definitions 3 and 1) to evaluate the importance
of each case. In contrast, KGCM uses a heuristic, which is the distance between a case and the class boundary,
to select cases. We believe that this heuristic works better than many existing approaches, but as it is a heuristic,
there may be situations when cases that are far from the boundary may not correspond to the high quality cases.
In such a situation, RC-FP and COV-FP work better than KGCM , as in the balance domain.

• We can also observe the fact that sometimes, the competence of KGCM reaches above 100%. For instance, in the
experiments on the scale and wdbc (Fig. 6) case sets, we find that the competence of KGCM increased above
100% when the ratio of case base size reached 3% and 25%, respectively. This also happens in the figures from
Fig. 7 to Fig. 13, including the case sets adult, australian, cleve, crx, diabetes, flare, hepati-
tis, hungarian, german, heart, hypothyroid, iris, led24, monk2, sick-euthyroid, tokyo,
sleep, twonorm, vote, and waveform. This can be explained by the fact that in these domains, the cases that
are selected by the KGCM algorithm are indeed of very high quality and do not contain much noise. However, this
happens less frequently for the other algorithms including some cited case deletion and case addition algorithms.
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• Comparing with the LGCM algorithm, the time complexity of KGCM is higher. However, we can see that KGCM
outperforms LGCM in terms of case-base competence, as shown in Figs. 3, 4 and 6. We attribute this improvement
to the usage of kernels.

6. Conclusions and future work

In this paper we presented a new case-base mining framework that includes both the theory and the KGCM algo-
rithm for mining a new case base from the raw case set. Our theorem provides guidance on how to select new cases.
We have shown that it is better to select cases with high diversity after performing the KFDA-based feature selection
operation. In our KGCM algorithm, we convert the problem feature vector set of a raw case set into a feature space
through kernel transformation. Optimal feature selection is done in this space through a correlation analysis, and the
best cases are chosen based on a global diversity constraint and a maximal correlation constraint. Although the time
complexity of KGCM is slightly higher than that of LGCM, its performance is better. We also tested our KGCM
algorithm on a large number of raw case sets against many previous algorithms.

In the future we wish to extend this work to include other kernel methods for mining of the case bases. Another
important future work is to automatically find the best number of cases for a case base. This number should be
controlled by the distribution of the raw case set. Determining the best value for the size of the case base might be
an empirical question that is similar to the issue of determining the optimal number of clusters in a large data set.
Finally, some case-based reasoning problems are inherently disjunctive in nature, where a concept can be defined
according to different data groups or because of concept drift. This is the case with spam email detection, for which
some researchers have shown that CBR methods outperform some traditional machine learning methods such as Naive
Bayes [12]. We can extend KGCM to handle the disjunctive concepts by first performing a clustering operation on
positive cases that correspond to spam emails, and then perform multi-class KFDA-based feature selection on each
cluster. We plan to explore this issue in the future.

Appendix A

Proof of Theorem 3.1. According to Eq. (1), we have

E�x,s

[
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where E�s|�x[�s] refers to the expectation taken with respect to all possible values of �s, weighted by their probabilities
given �x.
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(in light of Definition 8)
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. (21)

Then after plugging Eq. (21) into Eq. (20), we get the result of the theorem. �
Appendix B

The following is a complete list of the terms and notations used in this paper.

Notation Meaning
T Raw case set
CB Case base
T A general case set, which can refer to T or CB
X Problem set
X Transformed problem set
S Solution set
�x Problem feature vector
c A case, c = (�x, s)

�s Solution vector of �x
N Size of T
M Size of the CB
l Size of the solution set
d Dimension of problem feature vector �x
E�x,�s[·] Expectation over �x and �s with respect to their probabilities
CRS Candidate Reachability Set of a Problem
CCS Candidate Coverage Set of a Case
Coverage See Definition 1
Reachability See Definition 2
GroupCoverage See Definition 4
RelativeCoverage See Definition 3
φ A transformation of problem feature vector
Xi The set of cases with the same solution si in the feature space
�mi Centroid of Xi

SB Scatter matrix between different solutions
SW Scatter matrix within a solution
�w Eigenvectors of KFD
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